ROC (Receiver operator curve) data from a classification random forest.
Source:R/gg_roc.R
gg_roc.rfsrc.Rd
The sensitivity and specificity of a randomForest classification object.
Arguments
- object
an
rfsrc
classification object- which_outcome
select the classification outcome of interest.
- oob
use oob estimates (default TRUE)
- ...
extra arguments (not used)
Examples
## ------------------------------------------------------------
## classification example
## ------------------------------------------------------------
## -------- iris data
rfsrc_iris <- rfsrc(Species ~ ., data = iris)
# ROC for setosa
gg_dta <- gg_roc(rfsrc_iris, which_outcome = 1)
plot(gg_dta)
# ROC for versicolor
gg_dta <- gg_roc(rfsrc_iris, which_outcome = 2)
plot(gg_dta)
# ROC for virginica
gg_dta <- gg_roc(rfsrc_iris, which_outcome = 3)
plot(gg_dta)
## -------- iris data
rf_iris <- randomForest::randomForest(Species ~ ., data = iris)
# ROC for setosa
gg_dta <- gg_roc(rf_iris, which_outcome = 1)
plot(gg_dta)
# ROC for versicolor
gg_dta <- gg_roc(rf_iris, which_outcome = 2)
plot(gg_dta)
# ROC for virginica
gg_dta <- gg_roc(rf_iris, which_outcome = 3)
plot(gg_dta)