Package index
-
calc_auc() - Area Under the ROC Curve calculator
-
calc_roc(<rfsrc>) - Receiver Operator Characteristic calculator
-
ggRandomForests-package - ggRandomForests: Visually Exploring Random Forests
-
gg_error() - randomForest error rate data object
-
gg_partial() - Split partial lots into continuous or categorical datasets
-
gg_partial_rfsrc() - Split partial lots into continuous or categorical datasets
-
gg_partialpro() - Split partial lots into continuous or categorical datasets
-
gg_rfsrc(<rfsrc>) - Predicted response data object
-
gg_roc(<rfsrc>) - ROC (Receiver operator curve) data from a classification random forest.
-
gg_survival() - Nonparametric survival estimates.
-
gg_variable() - Marginal variable dependence data object.
-
gg_vimp() - Variable Importance (VIMP) data object
-
kaplan() - nonparametric Kaplan-Meier estimates
-
nelson() - nonparametric Nelson-Aalen estimates
-
plot(<gg_error>) - Plot a
gg_errorobject
-
plot(<gg_rfsrc>) - Predicted response plot from a
gg_rfsrcobject.
-
plot(<gg_roc>) - ROC plot generic function for a
gg_rocobject.
-
plot(<gg_survival>) - Plot a
gg_survivalobject.
-
plot(<gg_variable>) - Plot a
gg_variableobject,
-
plot(<gg_vimp>) - Plot a
gg_vimpobject, extracted variable importance of arfsrcobject
-
quantile_pts() - Find points evenly distributed along the vectors values.
-
r_data_types() - r_data_types infers correct data classes for each column in a data.frame
-
shift() - lead function to shift by one (or more).
-
surv_partial.rfsrc() - Calculate survival curve partial plot.
-
varpro_feature_names() - varpro one hot encodes features, so we need to get the "raw" original variable names. This loops through the variable names not in the original dataset, and cuts one character off the end until we find the variable name in the original data.