Skip to contents

All functions

calc_auc()
Area Under the ROC Curve calculator
calc_roc(<rfsrc>)
Receiver Operator Characteristic calculator
ggRandomForests-package
ggRandomForests: Visually Exploring Random Forests
gg_error()
randomForest error rate data object
gg_partial()
Split partial lots into continuous or categorical datasets
gg_partialpro()
Split partial lots into continuous or categorical datasets
gg_rfsrc(<rfsrc>)
Predicted response data object
gg_roc(<rfsrc>)
ROC (Receiver operator curve) data from a classification random forest.
gg_survival()
Nonparametric survival estimates.
gg_variable()
Marginal variable dependence data object.
gg_vimp()
Variable Importance (VIMP) data object
kaplan()
nonparametric Kaplan-Meier estimates
nelson()
nonparametric Nelson-Aalen estimates
plot(<gg_error>)
Plot a gg_error object
plot(<gg_rfsrc>)
Predicted response plot from a gg_rfsrc object.
plot(<gg_roc>)
ROC plot generic function for a gg_roc object.
plot(<gg_survival>)
Plot a gg_survival object.
plot(<gg_variable>)
Plot a gg_variable object,
plot(<gg_vimp>)
Plot a gg_vimp object, extracted variable importance of a rfsrc object
quantile_pts()
Find points evenly distributed along the vectors values.
r_data_types()
r_data_types infers correct data classes for each column in a data.frame
shift()
lead function to shift by one (or more).
varpro_feature_name()
varpro one hot encodes features, so we need to get the "raw" original variable names. This loops through the variable names not in the original dataset, and cuts one character off the end until we find the variable name in the original data.