Package index
-
calc_auc()
- Area Under the ROC Curve calculator
-
calc_roc(<rfsrc>)
- Receiver Operator Characteristic calculator
-
ggRandomForests-package
- ggRandomForests: Visually Exploring Random Forests
-
gg_error()
- randomForest error rate data object
-
gg_partial()
- Split partial lots into continuous or categorical datasets
-
gg_partialpro()
- Split partial lots into continuous or categorical datasets
-
gg_rfsrc(<rfsrc>)
- Predicted response data object
-
gg_roc(<rfsrc>)
- ROC (Receiver operator curve) data from a classification random forest.
-
gg_survival()
- Nonparametric survival estimates.
-
gg_variable()
- Marginal variable dependence data object.
-
gg_vimp()
- Variable Importance (VIMP) data object
-
kaplan()
- nonparametric Kaplan-Meier estimates
-
nelson()
- nonparametric Nelson-Aalen estimates
-
plot(<gg_error>)
- Plot a
gg_error
object
-
plot(<gg_rfsrc>)
- Predicted response plot from a
gg_rfsrc
object.
-
plot(<gg_roc>)
- ROC plot generic function for a
gg_roc
object.
-
plot(<gg_survival>)
- Plot a
gg_survival
object.
-
plot(<gg_variable>)
- Plot a
gg_variable
object,
-
plot(<gg_vimp>)
- Plot a
gg_vimp
object, extracted variable importance of arfsrc
object
-
quantile_pts()
- Find points evenly distributed along the vectors values.
-
r_data_types()
- r_data_types infers correct data classes for each column in a data.frame
-
shift()
- lead function to shift by one (or more).
-
varpro_feature_name()
- varpro one hot encodes features, so we need to get the "raw" original variable names. This loops through the variable names not in the original dataset, and cuts one character off the end until we find the variable name in the original data.