Receiver Operator Characteristic calculator
Arguments
- object
rfsrc
orpredict.rfsrc
object containing predicted response- dta
True response variable
- which_outcome
If defined, only show ROC for this response.
- oob
Use OOB estimates, the normal validation method (TRUE)
- ...
extra arguments passed to helper functions
Details
For a randomForestSRC prediction and the actual response value, calculate the specificity (1-False Positive Rate) and sensitivity (True Positive Rate) of a predictor.
This is a helper function for the gg_roc
functions, and
not intended for use by the end user.
Examples
## Taken from the gg_roc example
rfsrc_iris <- rfsrc(Species ~ ., data = iris)
gg_dta <- calc_roc(rfsrc_iris, rfsrc_iris$yvar,
which_outcome = 1, oob = TRUE
)
gg_dta <- calc_roc(rfsrc_iris, rfsrc_iris$yvar,
which_outcome = 1, oob = FALSE
)
rf_iris <- randomForest(Species ~ ., data = iris)
gg_dta <- calc_roc(rf_iris, rf_iris$yvar,
which_outcome = 1
)
#> Warning: number of rows of result is not a multiple of vector length (arg 2)
gg_dta <- calc_roc(rf_iris, rf_iris$yvar,
which_outcome = 2
)