Nonparametric survival estimates.
Usage
gg_survival(
interval = NULL,
censor = NULL,
by = NULL,
data,
type = c("kaplan", "nelson"),
...
)
Arguments
- interval
name of the interval variable in the training dataset.
- censor
name of the censoring variable in the training dataset.
- by
stratifying variable in the training dataset, defaults to NULL
- data
name of the training data.frame
- type
one of ("kaplan","nelson"), defaults to Kaplan-Meier
- ...
extra arguments passed to Kaplan or Nelson functions.
Value
A gg_survival
object created using the non-parametric
Kaplan-Meier or Nelson-Aalen estimators.
Details
gg_survival
is a wrapper function for generating
nonparametric survival estimates using either nelson
-Aalen
or kaplan
-Meier estimates.
Examples
## -------- pbc data
data(pbc, package = "randomForestSRC")
pbc$time <- pbc$days / 364.25
# This is the same as kaplan
gg_dta <- gg_survival(
interval = "time", censor = "status",
data = pbc
)
plot(gg_dta, error = "none")
plot(gg_dta)
# Stratified on treatment variable.
gg_dta <- gg_survival(
interval = "time", censor = "status",
data = pbc, by = "treatment"
)
plot(gg_dta, error = "none")
plot(gg_dta)
# ...with smaller confidence limits.
gg_dta <- gg_survival(
interval = "time", censor = "status",
data = pbc, by = "treatment", conf.int = .68
)
plot(gg_dta, error = "lines")